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I. INTRODUCTION

The research carried out under Contract N00014-84-K-0574, which began

1 August 1984, is primarily in the field of nonlinear acoustics. The broad goal is to

determine the laws of behavior of finite-amplitude sound waves, especially to find

departures from the laws of linear acoustics. Phenomena are studied that may have

application to problems of national defense and technology. The contract is the

successor to Contract N00014-75-C-0867, which ended 31 August 1984 (86-1),1 and

also continues research begun under Contract N00014-82-K-0805 on the specific

topic of nonlinear effects in long range underwater propagation (86-3). This report

covers the period 1 November 1985 - 31 October 1986 (the First Annual Report (85-8)
covered the period 1 August 1984 - 31 October 1985). However, much of the work
reported here had its beginnings under the two previous contracts.

The following persons participated in the research.

Graduate students

- F. D. Cotaras, Ph.D. student in Electrical and Computer Engineering.

Andrew J. Kimbrough, M.S. student in Mechanical Engineering.
J. A. TenCate, Ph.D. student in Mechanical Engineering.

Senior personel
C. L. Morfey, consultant, Institute of Sound and Vibration Research, University of

Southampton, England.

W. M. Wright, consultant, Physics Department, Kalamazoo, Michigan.
D. T. Blackstock, principal investigator.

II. PROJECTS

A. Nonlinear Effects in Underwater Propagation

The main project in this area has been long range propagation of finite-amplitude

pulses in a stratified, dissipative ocean. Additional special projects include (a) the

1 Numbers given in this style refer to items in the Chronological Bibliography given at
the end of this report, e.g., 86-1 means the first entry in the list for 1986.



pressure, temperature, and salinity dependence of the nonlinearity coefficient 3 and

related quantities, and (b) passage of a finite-amplitude pulse through a caustic region.
For descriptions of work done prior to the period of this report, see Refs. 85-8 and 86-3.

1. Finite-Amplitude Pulse Propagation through a Layered Dissipative Oce,.-,n

The primary purpose of this project, which was carried out mainly by

Cotaras, was to determine the extent to which nonlinear propagation effects are
important in long range underwater propagation. Nonlinear geometrical acoustics (ray

theory for finite-amplitude waves) was the theoretical model used, and the approach
was both analytical and computational. The acoustical signals studied were largely
limited to explosion pulses. Taken into account in the propagation were the

inhomogeneity (layered structure) of the ocean medium, finite-amplitude distortion, and
real-ocean attenuation and dispersion.

With the completion of Cotaras's master's thesis in August 1985 (85-7),

the work was largely completed. (Not considered, however, were propagation paths

that include reflections or caustics.) A substantial amount of time during the present
year was devoted to reporting the results in the open literature. First, Cotaras

converted his thesis to a technical report (85-7). Then two oral and written papers
were prepared for the 12th International Congress on Acoustics and one of its satellite

symposia, Underwater Acoustics, which were held in Canada in July 1986. The

abstracts of the two papers (86-4 and 86-5, respectively) are as follows:

Beyond What Distance are Finite Amplitude Effects Unimportant?

F. D. Cotaras, D. T. Blackstock, and C. L. Morfey, 12th ICA Associated

Symposium on Underwater Acoustics, Halifax, Canada, 16-18 July 1986,
Paper Q-9.

The propagation of explosion pulses through a lossy, stratified ocean was
investigated numerically via nonlinear geometrical acoustics. Reflections and

focusing were not considered. Calculations for a weak shock with an
exponentially decaying tail were made to determine the relative importance of
nonlinear distortion, inhomogeneity, losses, and dispersion on the received

2
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wave. More realistic waveforms (one bubble pulse included) were used to

determine the distance beyond which nonlinear effects are unimportant. For a
0.818 kg TNT explosion, the distance was found to be 1100 m for spectral

components below 6 kHz. For the 22.7 kg explosion, the corresponding

quantities are 4 kHz and 1100 m.

Time Domain Presentation of Geometrical Acoustics
Frederick D. Cotaias and David T. Blackstock, 12th International Congress on

Acoustics, Toronto, Canada, 21-31 July 1986, Paper 12-1.

The theories of linear and nonlinear geometrical acoustics are derived from
simplified versions of the lossless hydrodynamics equations in the fashion put

forth by Ostrovskii et al. (Sov. Phys.-Acoust. 22, 516-520, 1976). The

development, which is carried out solely in the time domain, leads to an

eikonal equation and a transport equation. The eikonal equation, from which

an equation for the ray paths is derived, is the same for both small-signal and
finite amplitude waves. The transport equation is, however, different for the

two cases. It leads to a standard first-order progressive wave equation, linear

for small-signal waves, but nonlinear for finite amplitude waves.

2. Special Proiects

Discussed in this section are two special projects. First is calculation of

the dependence of various coefficients of nonlinearity on pressure, temperature, and

salinity (Morfey, Cotaras, and Kimbrough). This work is an outgrowth of calculations

done earlier by Morley (under Contract N00014-82-K-0805) during the early stages of
the long range propagation project.2

2 C. L. Morley, "Nonlinear Propagation in a Depth-Dependent Ocean," Technical
Report ARL-TR-84-1 1, Applied Research Laboratories, The University of Texas at
Austin, 1 May 1984 (ADA 145 079).
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The best known coefficient of nonlinearity is 13,

3 = 1 +B/2A = 1 +poCo(ac/aP)T + (aco To/Cp)(ac/DT)p, (1)

where p is density, c is sound speed, P is total pressure, T is absolute temperature, a is
the isobaric coefficient of thermal expansion, Cp is the specific heat at constant
pressure, and B/2A is the dimensionless coefficient of the quadratic term in the
isentropic pressure-density relation.3 The subscript 0 denotes a value for the

undisturbed medium. It is also understood that the partial derivatives are evaluated at
p = po (the undisturbed state). In firtode nonlinear acoustics 13 is the only coefficient
of nonlinearity required. For example, 13 appears in the plane wave formula for shock
propagation speed

dt shock PO 0  ' (2)

where Pm is the mean of the acoustic pressure (P-Po) on both sides of the shock.

For strong enough waves, however, the propagation cannot be

characterized by 13 alone. In s nonlinear acoustics a new coefficient 13',
given by

13' = pc2 (p13/aP)s = 13 (13-1) + p2c3 (a2c/aP 2)s (3)

(S stands for entropy), must be introduced. The new coefficient appears, for example,
in the second-order version of Eq. (2),

dtshock P0C- 6 \PoC0 1 2-1 4' 4

3 H. Endo, "Determination of the nonlinearity parameters for liquids using
thermodynamic constants," J. Acoust. Soc. Am. 71, 330-333 (1982).
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Here A P is the pressure jump across the shock, and

=ac2/Cp (5)

is the Gruneisen parameter. An alternative expression for 13' is

13'= C/2A-(13-1)(13-3)/2 , (6)

where C/2A is the dimensionless coefficient of the cubic term in the isentropic

pressure-density relation.

Using data on the properties of c, p, a, and Cp for seawater, we expect to

calculate values of 3, 13', 4), and related quantities as a function of pressure,
temperature, and salinity. Calculations of this sort for 13 have recently been reported by
Endo. 3,4 Endo's results will serve as a check for our computations. Our calculations

will be based on data from sources5 -9 in addition to those Endo used.'0 -12 During the

present report period we have compiled on a computer the various data bases needed

to calculate 3, 13', 4, and related quantities.

4 H. Endo, "Calculation of nonlinearity parameter for seawater," J. Acoust. Soc. Am. 2a,
274-279 (1984).
5 B. Gebhart and J. C. Mollendorf, "A new density relation for pure and saline water,"
Deep Sea Res. 24, 831-848 (1977).
6J. R. Lovett, "Merged seawater sound-speed equations," J. Acoust. Soc. Am. 6,
1713-1718 (1978).
7 C-T. Chen, R. A. Fine, and F. J. Millero, "The equation of state of pure water
determined from sound speeds," Chem. Phys. f&, 2142-2144 (1977).,: e Engineering Sciences Data Unit, ESDU Data Item No. 77024 (London).9 Engineering Sciences Data Unit, ESDU Data Item No. 68008 (London).

10C-T. Chen and F. J. Millero, "The specific volume of seawater at high pressures,"
Deep Sea Res. 23, 595-612 (1976).
11 C-T. Chen and F. J. Millero, "Speed of sound in seawater at high pressures,"
J. Acoust. Soc. Am. E2, 1129-1135 (1977).
12 F. J. Millero, G. Perron, and J. E. Desnoyers, "Heat capacity of seawater solutions
from 50 to 35 0C and 0.5% to 22% chlorinity," J. Geophys. Res. Z, 4499-4507 (1973).
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The second special project is propagation of finite-amplitude pulses
through caustics. Work on this topic was done during the previous year by Richard
Buckley, a consultant at University of Southampton, under the direction of Morfey. See
Ref. 85-8. Unfortunately, because of the illness of Buckley during the present year, no
progress may be reported.

B. Nonlinear. Noncollinear Interaction of Sound Waves

Work has been done on three tasks in this area: (1) Case A interaction in a
rectangular waveguide, (2) Case B interaction in a rectangular waveguide, and (3)
angular dependence of P for two interacting wave fields. Cases A and B are defined

below. The work has been carried out chiefly by TenCate, in collaboration with
Mark F. Hamilton (whose support since 1 September 1985 has come from Contract
N00014-85-K-079813) and, to a lesser extent, Blackstock.

In our previous annual report (85-8) two different cases of higher mode
propagation of finite-amplitude waves in a rectangular waveguide are described. In
Case A (called the "second case" by Hamilton' 3) a single source launches an intense
monochromatic wave (the fundamental) that travels down the waveguide in the 1,0

mode. Nonlinear propagation effects produce a family of distortion components to
accompany the fundamental: the second harmonic in the 2,0 mode, the third harmonic
in the 3,0 mode, the fourth harmonic in the 4,0 mode, and so on. The analysis is
simplest and the experiments most easily explained when the fundamental is in the
intermediate range neither very close to cutoff nor very far from cutoff. Case B (called
the "first case" by Hamilton' 3) involves the noncollinear interaction of a low frequency
wave in the 0,0 mode with a high frequency wave in the 1,0 mode. To be consistent
with limitations imposed by the analysis, TenCate and Hamilton carried out

experiments only with relatively weak waves.

13 M. F. Hamilton, "Problems in Nonlinear Acoustics: Parametric Receiving Arrays,
Focused Finite Amplitude Sound, and Dispersive Nonlinear Interactions," First Annual
Report under Contract N00014-85-K-0708, Department of Mechanical Engineering,
The University of Texas at Austin, April 1986, Section Ill.

6
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A preliminary report of our work on Cases A and B was given during the first year

of the contract (85-8). During the summer of 1985 experimental work on Case B

showed frustrating inconsistencies; it seemed very difficult to reproduce results from

one day to the next. It was finally discovered that the problems were due to spatial

aliasing and to the important role played by local nonlinear effects. We are indebted to

the Tjottas14 for instruction about the latter.

A second oral paper was given at the Nashville Meeting of the Acoustical Society

of America in November 1985 (85-9). Stressed in this paper were the theory for

Case B and analysis relating to material on the third task, i.e., the angular

dependence of P. The abstract of the paper is as follows:

A coefficient of nonlinearity for noncollinear plane wave interaction

Mark F. Hamilton and James A. TenCate, 110th Meeting, Acoustical Society

of America, Nashville, 4-8 November 1985, Paper S1.

An inhomogeneous wave equation, exact to second order in the field
variables, is derived for the sum and difference frequency pressure

-: generated by two plane waves, of angular frequencies w, and (o2, which
intersect at an angle p in a lossless fluid. The coefficient of nonlinearity

pertaining to the sum or difference frequency wave (wo±=(+oT± 2) is shown to

be

P±(O) = B/2A + coso ± 4(coc02/o)±2) sin 4(0/2) , (7)

where B/A is the parameter of nonlinearity. The same result may be

., deduced from the work of Zverev and Kalachev [Sov. Phys.-Acoust. 15, 322
(1970)]. The first term of P± is due to the isentropic equation of state, the

second term represents convection, and the third term comes from the
momentum equation.

14 J. N. Tjotta and S. Tjotta, "Interaction of sound waves, Part I: Basic equations,"

submitted to J. Acoust. Soc. Am.
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Alternative formulations of the inhomogeneous wave equation are
presented, and comparisons are made with the analyses of others. An
experiment designed to measure the angular dependence of 3, was
conducted with noncollinear waves in an airfilled waveguide. Results are
reported.

A third oral paper, accompanied by an extended written summary, was presented

at the 12th International Congress on Acoustics at Toronto in July 1986 (86-6). More
details and new measurements were reported. Both Case A and Case B were
covered, but only a little was said about the discovery of the importance of local
nonlinear effects in the Case B interaction. A full discussion of these effects appears in

a written paper submitted for publication in the Journal of the Acoustical Society of
America in September 1986 (86-9). The abstract of this paper is as follows:

S Sum and Difference Frequency Generation Due to Noncollinear Wave
Interaction in a Rectangular Duct
Mark F. Hamilton and James A. TenCate

Noncollinear wave interaction in a rectangular duct is investigated both
theoretically and experimentally. An inhomogeneous wave equation, exact
to second order in the field variables, is derived for the sum and difference

frequency pressure waves generated by noncollinear interaction of two
finite amplitude plane waves in a lossless fluid. This equation is extended

to the interaction of waves in higher order modes of a rectangular duct.
-- Quasilinear solutions are obtained, and tube wall attenuation is included ad

hoc. Experimental results are reported for the interaction of waves in the
(0,0) and (1,0) modes of an air filled rectangular duct. Theory and

experiment are in excellent agreement with regard to oscillatory structure of
the sum and difference frequency wave fields. Although agreement
between theory and experiment is reasonable (±2 dB), it is not within
estimated experimental error (±1 dB). It is shown that because local rather

8
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than cumulative nonlinear effects dominate the interaction, knowledge of

the proper second order source condition is of crucial importance.

Discrepancies between the predicted and measured amplitudes are

attributed to an inadequate description of the source condition.

Two more written papers are planned. One, on the angular dependence of 13

(86-10), will be submitted to J. Acoust. Soc. Am. in 1986. The other, on Case A

interaction, will be submitted by TenCate and Hamilton in 1987.

C. Reflection and Refraction of Finite-Amplitude Sound at a Plane Interface Between

T[wo Flids

This project is a prime example of our attempt to discover the laws of nonlinear

acoustics. The harvest of postwar research in nonlinear acoustics, by investigators in

many lands, is impressive. We now know a great deal about the propagation and

absorption of finite-amplitude waves, including plane, spherical, and cylindrical waves

and even quasi-one-dimensional waves, such as waves traveling through horns or ray

tubes. Research on parametric arrays has led to important discoveries about

piston-type radiation (a difficult two-dimensional problem) and diffraction of

finite-amplitude waves. Left relatively untouched in the charge of progress, however,

have been the important phenomena of reflection and refraction.

1. Backgrd

Two of the oldest and most venerable laws of acoustics (and many other

fields of wave motion) are the law of specular reflection and Snell's law. These laws

give the angles of reflection Or and transmission 0,, respectively, when a plane wave is

incident at an angle 0i on a plane interface between two fluids, in particular,
Specular reflection: Or = , (8)

Snell's law: sin C2(9)sin 0i cl

where c1 and c2 are the sound speeds in the first and second fluids, respectively.

9
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Another important result has to do with the pressures of the incident (pi), reflected (Pr),
and transmitted (Pt) waves. For example, at a rigid surface we have the following

result:

Rigid surface: Psurlace = 2 pi , (10)

where Psurface is the combined pressure of the reflected and incident waves at the

surface. This law is known as pressure doubling.

But do these laws hold for finite-amplitude sound waves? All known
derivations are based on linear theory, that is, small-signal waves are assumed. Two
possibilities for investigation are clear. Either (1) the laws continue to hold when the
amplitude becomes finite, in which case it should be possible to generalize their
derivation, or (2) the laws change with amplitude, in which case the nature and extent
of the change needs to be determined.

Not much evidence is available on reflection and refraction of
finite-amplitude waves, but that which does exist tends to support the second
possibility. First, it is known that when a finite-amplitude sound wave strikes a rigid
wall at normal incidence, deviations from pressure doubling do occur.15 The rigorously
correct law is that the excess sound speed (c-co) doubles. Since the acoustic pressure
p is nonlinearly related to the excess sound speed, pressure doubling occurs only in
the small-signal limit, where the relation between p and c-co becomes linear. Although
the case of normal incidence does not bear directly on the question of reflection and
refraction at oblique incidence, the fact that one known reflection law fails to hold at
high amplitude implies that others may fail as well. Second, and of more direct
relevance, is the information known about reflection and refraction of steady shock

$
15 D. T. Blackstock, "Normal reflection of finite amplitude plane waves from a rigid
wall," in Proc. of the Third Intern. Cong. Acoust., Stuttgart, 1959, edited by L. Cremer
(Elsevier Pub. Co., Amsterdam, 1961), Vol. 1, pp. 309-311.

10



waves obliquely incident on a plane interface between two gases.16 17 Experiments
show that while specular reflection and Snell's law hold for weak shocks, they do not
hold for stronger shocks. Moreover, phenomena foreign to small-signal acoustical
theory are observed. The interface itself undergoes a small but finite angular
deflection. More interesting is the fact that beyond a certain shock strength the
incident, reflected, and transmitted rays no longer intersect at the interface. The
incident and reflected rays do intersect but at a point above the interface; their
intersection is joined to the interface by a new shock, called the stem shock.
Unfortunately, the results for steady shock waves, which are both theoretical and
experimental, cannot be applied directly, or even easily modified, to continuous sound
waves of finite amplitude. Steady shocks are very special waves, having constant
states before and aft, and this fact greatly simplifies the analysis of their behavior.

In a few instances the question of reflection and refraction appears in the
literature of nonlinear acoustics. Van Buren and Breazeale18 "19 simply assume that
reflection and refraction are linear processes. For example, given a finite-amplitude
wave incident on a reflecting boundary, the authors decompose the (distorted) wave
into its Fourier components, each of which is then treated independently (and linearly)
to calculate its reflection. The reflected signals are then recombined and the
composite reflected wave is then allowed to propagate backward, distorting as it goes.
This approximation is very straightforward and useful (a number of other investigators
have used it), but it sheds no light on the fundamental question of the validity of
specular reflection and Snell's law. In nonlinear geometrical acoustics the question is

* also dodged by simply assuming that the ray paths are not changed when the signal is
of finite amplitude (85-7).

16 R. G. Jahn, "The refraction of shock waves at a gaseous interface," J. Fluid Mech. 1
457-489 (1956).
17 R. G. Jahn, "Transition processes in shock wave interactions," J. Fluid Mech. ?., 33-48
(1957).
18 A. L. Van Buren and M. A. Breazeale, "Reflection of finite-amplitude ultrasonic
waves. I. Phase shift," J. Acoust. Soc. Am. 44, 1014-1020 (1968).
19 A. L. Van Buren and M. A. Breazeale, "Reflection of finite-amplitude ultrasonic
waves. 11. Propagation," J. Acoust. Soc. Am. 441021-1027 (1968).



2. Progress during the Current Report Period

The investigation of reflection and refraction is Cotaras's doctoral
research topic. He has not been able to devote much time to it during the current

year, however, because of the effort required to finish up the long range propagation

project (85-7, 86-4, 86-5).

A literature survey has been done. Besides the works already referred

tO,1 5 19 papers by Ginsberg20-22 and two Chinese investigators23- 26 have been
reviewed. Ginsberg's papers are about finite-amplitude sound generated in a fluid by

transverse surface waves on a plate bounding the fluid. It was first thought that

Ginsberg's results might be directly applicable to the reflection-refraction problem. In
both cases the radiated waves (one field in Ginsberg's problem, two fields - reflected

and transmitted - in the reflection-refraction problem) are generated by a traveling
surface disturbance. In Ginsberg's case the surface is the vibrating plate. In the
reflection-refraction problem the surface is the interface, which is set in motion by the
incident wave. Unfortunately, however, it seems the two problems really are different.

The plate vibration is regarded as given, for example, a pure sinusoidal function,
whereas the the interface motion is a response coupled to the incident, reflected, and

refracted fields. As a rough approximation one would expect the interface wave simply

20 J. H. Ginsberg, "Multi-dimensional non-linear acoustic wave propagation, Part I1:
The nonlinear interaction of an acoustic fluid and plate under harmonic excitation,"
J. Sound Vib. 4, 359-379 (1975).
21 J. H. Ginsberg, "A re-examination of the non-linear interaction between an acoustic
field and a flat plate undergoing harmonic excitation," J. Sound Vib. 60, 449-458
(1978).
22 J. H. Ginsberg "Nonlinear generation of harmonics in sound radiation from a
vibrating planar boundary," J. Acoust. Soc. Am. U, 60-65 (1981).
23 Z. Qian, "Reflection of finite-amplitude sound wave on a plane boundary of half
space," Scientia Sinica (Series A) a, 492-501 (1982).
24 Z. W. Qian, "Reflection of finite-amplitude sound wave on a plane boundary of half
space (11)," Fortschritte der Akustik FASE/DAGA '82, Gottingen, 821-824 (1982).
25 S. Feng, "Reflection of finite amplitude waves," Sov. Phys.-Acoust. 6, 488-490
(1961).
26 S. Feng, "The reflection and refraction of a large amplitude plane sound wave in two
dimensions," Chinese J. Acoust. 2, 291-302 (1983).

12



to track the incident wave as in linear acoustics. If this is the case, the interface wave

must distort as it travels, not remain a pure sinusoid.

The papers by Qian23 ,24 and Feng 25,26 (and related papers cited by them)

are the only ones known to the author that deal specifically with nonlinear effects in

oblique-incidence reflection and refraction. The approach is to solve the

two-dimensional (lossless) equations of motion by conventional second order

methods, such as ordinary perturbation. Since the incident wave is assumed to be

(initially) monochromatic, the second order solution is composed of second harmonic

signals.23-25 For example, for this case Qian23 finds three second harmonic waves:

one associated with progressive distortion of the incident wave, another associated

with progressive distortion of the reflected wave (he claims that no causal relation

exists between the two), and finally an entirely new wave, which he calls a

"Q-harmonic," that propagates parallel to the rigid surface. The 0 wave results from

nonlinear interaction of the primary incident and reflected waves. Feng26 obtains a full

second order solution for the two-fluid problem. Second order as well as first order

reflection and transmission coefficients are identified. It is interesting to note that the

second order coefficients depend on the values of J0 for the two fluids. Other interesting

results include the apparent variation of amplitude along the wavefronts of the second

harmonic reflected and transmitted waves.

An oblique incidence experiment is being planned for the next period of

the contract.

D. Investigation of Subharmonic Generation and Chaos in an Acoustical Resonance

Tub

1. Bgmund

One of the most interesting fundamental questions in physics and

engineering today is how a deterministic system excited by a nonstochastic deriving

force can develop random response. How does chaos spring unexpectedly out of

order and regularity? A broad interest has developed in this question; see, for
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example, the proceedings of several recent interdisciplinary conferences.2 7-30 Chaotic

response has been observed in fluid flows, chemical reactions, mechanical systems

(for example, a mass on a nonlinear spring), population dynamics, nonlinear electrical

circuits, and structures operating under heavy ac or dc loads. In all cases nonlinearity

is an essential ingredient.

The descent to chaos frequently begins with period doubling bifurcations,

that is, subharmonics appear in the response of a system. For example, a deterministic

system driven just past its linear range may show only the fundamental and higher

harmonic frequencies f, 2f, 3f, 4f, ..., in its output. Driving the system harder may

produce subharmonics, for example, signals at f/2 and f/4. As the driving force is

further increased, more bifurcations occur. Signals at f/8, f/16, f/32, ..., appear and also

some of their harmonics, 3f/8, 5f/8, 3f/4, 3f/2 .... Eventually the spectrum of the output

becomes so cluttered that it cannot be distinguished from noise. Chaos has set in.

Very little work has been done on chaos in acoustics. eet many

acoustical systems are basically nonlinear and operate in modes that would seem to

allow the possibility of bifurcation. The only published work so far on chaos in

acoustical systems is that by Rudnick and coworkers on surface waves and liquid

helium, 3 1-33 and by Lauterborn and coworkers on acoustic cavitation.34-36 The latter

measured the sound from an acoustically generated bubble field in water and

observed period doubling and eventually chaos. Although the results are

unmistakable, Lauterborn's system is very complicated (the measured sound comes

from a bubble field, not a single bubble), and it is not very controllable. A simpler

acoustical system with which to demonstrate chaos would be desirable. Another need

27 ,"Testing Nonlinear Dynamics," NATO Advanced Research Workshop, Physics 11D,

252 (1984).
28 "Order in Chaos," Proceedings of conference at Los Alamos, 24-28 May 1982,
Phy.,aZD Nos. 1-3 (1983).
29 "Bifurcation Theory and Applications in Scientific Disciplines," ed. 0. Gurel and
0. E. Roessier, Ann. N.Y. Acad. Sci. M (1979).
30 "Nonlinear Dynamics," ed. R. Hellerman, Ann. N.Y. Acad. Sci. 3Z (1980).
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has to be with the kind of system to be investigated. Most previous experiments on

chaos have been done with lumped element systems, such as a mass on a nonlinear

spring or a nonlinear electrical circuit. Except in certain areas of hydrodynamics (and

that by Rudnick and coworkers), little or no work has been done on chaotic behavior of

distributed systems. A very simple, distributed acoustical system that would seem to

have the potential for chaotic behavior is the closed-end resonance tube. Driven hard

at one of its higher order resonances, it would have the capability of responding well to

subharmonic signals should they develop.

2. Work during the Current Report Period

The subharmonic response of an acoustical resonance tube was to have

been TenCate's doctoral project. Like Cotaras, TenCate was unable to devote much

time to his project this year because of time spent on finishing up a previous task, in
TenCates's case noncollinear interaction in a rectangular waveguide (85-9, 86-6,

86-9). Enough work was done, on the other hand, to show that although the
resonance tube seemed attractive for demonstrating subharmonic response and

chaos, in fact it does not have all the requisite characteristics.

31 R. Keolian, L. A. Turkevich, S. J. Putterman, I. Rudnick, and J. A. Rudnick, Phys. Rev.
Lett. 4Z, 1133 (1981).
32 R. Keolian and I. Rudnick, "Smooth modulation of parametrically driven surface
waves in liquid helium 4," 17th Int. Conf. Low Temp. Phys., Karlsruhe, 15-22 August
1984, PrQceedinga, pp. 1121-1122 (North-Holland, Amsterdam, Netherlands, 1984).
33 R. Keolian and I. Rudnick, "A surface wave instability on liquid helium and water,"
Paper 110 presented at the 109th Meeting, Acoustical Society of America, Austin,
8-12 April 1985. J. Acoust. Soc. Am. ZZ, S21 (1985).
34 W. Lauterborn and E. Cramer, "Subharmonic route to chaos observed in acoustics,"
Phys. Rev. Lett. 4,Z 1445-1448 (1981).
35 W. Lauterborn and E. Suchla, "Bifurcation superstructure in a model of acoustic
turbulence," Phys. Rev. Lett. Q, 2304-2307 (1984).
36W. Lauterborn, "Acoustic turbulence," in Proceedings of the International School of
Physics "Enrico Fermi", Course XCIII (North-Holland, Amsterdam, 1986), pp. 124-143.
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In the beginning, we expected the resonance tube to exhibit
characteristics similar to those of a mass-nonlinear spring oscillator. When driven
hard, a hard spring oscillator, for example, develops a "bent over" (multivalued)
response curve. A bifurcation in the motion is then possible that leads to subharmonic
response and, ultimately, to chaos. Careful study of the literature on finite-amplituc .
standing waves in a tube showed, however, that the tube is not a good candidate for
chaotic response. Although the response curve of a resonance tube does show a
slight tendency to become skewed as the drive amplitude is raised, a much more
pronounced effect is a lowering of the Q of the response. The broader the resonance

curve, the more difficult it is for the curve to bend over so far that it becomes
multivalued. Bifurcation then does not occur, and without it, significant subharmonic

response is not likely.

A complete telling of the story is given in Appendix A, which was written
by TenCate. Although the results of the investigation are negative, and therefore

disappointing, the study was not without benefit, both educational and technical.

E. Other Work

Journal articles were submitted on some of our older work on other projects, in
particular, thermoacoustics (86-8) and saturation in porous materials (86-2). Finally, a
general review of nonlinear acoustics was presented (86-7).

.41
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APPENDIX A

STUDY OF POSSIBLE SUBHARMONIC GENERATION IN A
CLOSED END RESONANCE TUBE

by
James A. TenCate

1 INTRODUCTION

1.1 Prelude

Over the past 10 years a considerable amount of attention has been focused on
the chaotic behavior of nonlinear systems. Many nonlinear systems, it seems, can
make a transition from periodic to chaotic behavior [1]. The most common way
in which this transition occurs is the appearance of subharmonics in the response
of the system. The initial idea for our study was to look for such a transition (or
route to chaos) in a distributed acoustical system, an air-filled resonance tube. An
attempt was to be made to observe subharmonics in a tube driven at one of its
higher order longitudinal modes. If subharmonics were observed, we would try to
observe the complete onset of chaos. Unfortunately, after a careful examination of
related previous work, we have concluded that subharmonics would likely not be
observed. What follows is a review of previous work which led to our conclusion as
well as a discussion of the current state of affairs in the field of acoustic chaos. A
little background is appropriate at this point.

1.2 General Discussion

Two common ways for a system to make the transition to chaos are (1) period-
doubling routes to chaos [2,3,4], and (2) quasi-periodic routes [5,6,7]. Many quasi-
periodic routes seem to be associated with a parametric excitation of the system;
period-doubling routes are often encountered with nonlinear oscillators described
by a Duffing equation (e.g., a mass on a nonlinear spring,.

The period-doubling transition to chaos is perhaps the more elegant. If
one drives a nonlinear system beyond a certain critical point, the system noise (in
the form of subharmonics) suddenly begins to increase rapidly. The system which
initially responded at only the drive frequency now responds at 1/2 the forcing
frequency as well. Period-doubling (or a bifurcation)(8] has occurred. As the system
is driven harder and harder, the doubling occurs again and again. Eventually, the
system response appears to be random noise. Such a transition to chaos has been
observed in a common (albeit slightly unusual) system, a rectangular pot of boiling
water [1].

The quasi-periodic route is less common. Although subharmonics do appear.
they do not follow a period-doubling sequence. Rudnick [9] notes that initially
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signals at irrational multiples of the driving frequency appear in the response.
Phase locking [10], however, forces the system to respond at frequencies 1/3. 1/5,
1/6,...,1/n of the fundamental driving frequency (hence the origin of tile term quasi-
periodicity). It's interesting to note that the subharmonics usually occur in pairs.
Moreover, the two subharmonics amud the driving frequency make up a resonant
triad-the sum of the two subharmonic wave numbers equals the wave number of
the fundamental.

Most of the experimental work done to date has demonstrated the transition
to chaos in discrete systems [2,3]. Experiments with simple continuous systems
(such as a fluid) are relatively rare. However, at least one computer simulation of
such a system has been carried out by treating the continuous model as a large
number of discrete parts. The Navier-Stokes equations, for example, have been
transformed into five coupled differential equations and the simulated fluid modeled
on a computer [11]. The simulated system exhibited period-doubling. One of the
classical resonant acoustical systems is a column of air in a closed pipe. Because of
its simplicity, we chose to examine this system for period-doubling behavior.

1.3 Possible Acoustic Experiments

Many types of acoustical systems may exhibit a transition to chaos. We shall
examine some of the possibilities and mention some of the more notable experiments
that have been performed. Some of these experiments are discussed in detail in
Part 2 (below). The discussion is split into three parts: discrete, hybrid, and
continuous systems.

Discrete systems

Many discrete mechanical systems exhibit a transition to chaos. All of these sys-
tems have elements which are nonlinear and most take the period-doubling route
to chaos. Some acoustical systems may be modeled with nonlinear, discrete (i.e.,
lumped) elements. Thus, one might expect to find chaos in any acoustical system
which has an analogous, chaotic mechanical counterpart. Two systems come to
mind: (1) a piston in a shallow, fluid-filled cavitity [12] and (2) a Helmholtz res-
onator [13]. Both are analogous to a mass on a nonlinear spring. At present, no one
has reported chaotic behavior for these acoustical systems. However, since the me-

* chanical counterpart of these two acoustical systems has been studied extensively,
finding chaos in these acoustical systems, although possible, is a less attractive
prospect than the closed resonance tube.

Hybrid systems

A few acoustical "hybrid" experiments have been performed with great success
[14,15,16]. These experiments are characterized by the introduction of an artificial
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nonlinearity into an otherwise continuous linear (or nearly so) system. The transi-
tion to chaos in all of these experiments has been via period-doubling. We discuss
them at length in Part 2.

Continuous systems

Reports of observation of chaos in continuous systems are rare, both for mechanical
and acoustical systems. Perhaps the first place one might look for chaos is in a
simple resonant system (e.g., a cavity or standing wave tube). Indeed, various
experiments have been performed using both systems.

Subharmonic generation in resonant cavities [17-20] has been studied ex-
tensively. Here the purpose of the work was only to examine the subharmonics,
not to look for chaos. These systems may, in fact, exhibit chaotic behavior via a
quasi-periodic transition.

Many experiments with standing, finite amplitude plane waves in tubes have
been performed [21-27]. The researchers were generally not looking for subharmon-
ics or chaos. However, careful study of these experiments has shown that a standing
wave tube exhibits behavior characteristic of a hard spring/mass system. When
driven hard enough, lumped element hard spring/mass systems have exhibited
period-doubling.

2 HYBRID AND CONTINUOUS SYSTEMS

2.1 Acoustic systems with an artificial nonlinearity

Although systems with an artificial nonlinearity were an aside to our project, three
papers deserve special mention:

1. Pedersen [14] did an early experiment which showed period-doubling in a
strongly driven loudspeaker.

2. Maganza et al. 1151 at IRCAM did an experiment showing period-doubling
bifurcations in clarinet-like systems. A nonlinearity (a clarinet reed) was
introduced into a simple linear system (a tube of air). The period-doubling
bifurcations were quite distinct. The authors were also able to show that the
system made a complete transition to chaos.

3. Kitano et al. [16] used a column of air, an amplifier, loudspeaker, and micro-
phone for their experiment. The nonlinearity they introduced into the system
was electrical-a simple full-wave rectifier. Two rather interesting things to %

which we return to later ought to be noted: (1) the transition to chaos was
via period-doubling and (2) the onset of chaos was very abrupt and accom-
panied by a very distinct change in the sound character of the loudspeaker.
Experiments similar to this one have recently been reported by two Chinese
groups [28].
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2.2 Continuous acoustical systems

What follows is a discussion of various experiments with resonant cavities (acoustic
interferometers) and some experiments with acoustic turbulence. Two groups seem
to have done most of the interferometer work, one at University of Tennessee and
the other at Harvard. Acoustic turbulence has been studied by Lauterborn's group
at G6ttingen.

Fabry-Perot interferometer

The first observation of sublharmonic generation in a resonant cavity seems to have
been by Korpel and Adler [29]. A water-filled Fabry-Perot interferometer was para-
metrically excited at one of its higher order modes. Subharmonic responses were
observed at frequencies f/n (where n is an integer). Several papers from Iniversit v
of Tennesee followed shortly thereafter [17-20]. The results of these experiments

seem to indicate the authors had observed a partial quasi-periodic transition to
chaos. A similar experiment with nearly the same results was performed a bit later
at the Naval Postgraduate School (NPS) by Ruff [30].

Coupled oscillators

The work Breazeale began was taken up by Yen at Harvard [31,32]. Yen developed
a theory to describe the results obtained by the Tennessee group and expanded on
them with some of his own experimental work. His report begins with a discussion
of a discrete case: three coupled, weakly nonlinear oscillators. The discussion
continues with an introduction to phase locking and "resonant triads." The analysis
for the discrete case is then extended to the continuous case (finite elements).
Using this method, Yen had quite a bit of success in predicting the behavior of the
interferometer. His experiment [32] supports his theory quite well.

Acoustic turbulence

The experiments done by Lauterborn's group [33-35] with a cavitating liquid are
of a completely different character. In fact, Lauterborn prefers to call his work a
study of "acoustic turbulence." Numerous bifurcations and eventually chaos were
observed in the acoustical signal; the bubbles themselves cont ribute the nonlinearity
to the svstem [36]. Here again the ubiquitous period-doubling route to chaos was
observed.

S.

3 CONTINUOUS SYSTEMS (Finite-Amplitude Standing Waves)

Our goal was to try to observe subharmonics associated with a period-(loulbling
transition to chaos in a resonance tube. Driving the tul)e at 2, .1, 8, or even
16 times the fundamental frequency would allow the appropriate subha rnonics to
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appear as lower order modes of the tube. To explore the possibility, we exam-iined

previous studies of finite-amplitude waves in a resonance tube. Perhaps hints of

subharmonic behavior (or lack thereof) could be found.

3.1 Sudden appearances (and disappearances) of shocks

Studies of standing waves of finite amplitude in tubes go back to the early 1930s

(see [21,22]). Early researchers were puzzled by the sudden appearance (and disap-

pearance) of shocks in the tube at a certain drive amplitude. A similar effect was
observed by varying the frequency at a fixed drive amplitude. As the frequency of

the source approached the natural resonance frequency of the tube, shocks would

suddenly appear at some point; as the source frequency was increased beyond
resonance, the shocks disappeared as suddenly as they had appeared. Such curi-
ous behavior puzzled researchers for a long time. Reichwein [24] in 1962, in fact,
published an entire thesis on just that behavior. These on/off appearances are sug-

gestive of bifurcations and are also vaguely reminiscent of the onset of chaos heard
bv Kitano et al. [16].

3.2 Asymmetric response curves

One way to understand the behavior of a system is to examine its frequency re-
sponse (amplitude versus frequency). For a linear system, the frequency response
curve is symmetric about the maximum, which occurs at the system's natural res-
onance frequency. However, for a mass on a nonlinear spring, a curious asymmetry
develops. The natural frequency of the system depends on amplitude [37], and the
response curve becomes skewed. Figure A-i [38] shows the effect quite clearly. If
the system is driven hard enough the response curve becomes multivalued and the

system unstable. Interestingly, a certain amount of asymmetry may be observed in
the response curves of the resonance tubes used in past high intensity experiments.
What indication do these curves give? What follows is a list of what was found.

1. Mayer-Schuchard [21] had peak pressure amplitudes of 0.41 atm. His response
curves, shown in Fig. A-2, are noticeably asymmetric and reminiscent of a
hard spring/mass system. However, the curves do not appear to be skewed

enough for the system to be unstable.

2. Lettau [22] had pressures of 0.2 to 0.3 atm and did not notice any asymImetrv
in his response curves.

3. Reichwein [24] had pressures of 0.28 atm. Although he did not find an asyni-

metric response curve, he did have problems finding the resonance frequency
at high source levels. It was about 1 Ilz higher than he had expected, lIe
attributed the problem to a rise in temperature of the tube during the course
of the experiment. In fact, later researchers [39] using the same apparatus
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went to great lengths to correct the "problem." It did not go away. In hind-
sight, the change in resonance frequency was probably due to the nonlinear
response of the system. something they had probably neglected.

4. Cruikshank [25] also observed an asymmetric response curve. He attributed
the asymmetry to nonlinear behavior and made the analogy with the hard

spring/mass system.

5. The work of Sturtevant [26] is by far the most interesting of these studies.
Sturtevant obtained very intense levels with peak pressures on the order of
0.82 atm. His response curve is shown in Fig. A-3. The horizontal axis shows

0.80 -b,=0

0-7

0.60

10-40

0.20

0

-1'5 -1.0 -0.5 0 05 I'0 1"5

Response curve for closed tube. -, nonlinear theory: (1), maximum value of
f; c), ~mnmum value off,; (3),f just behind discontinuity; (Jf 1 just ahead of discontinuity.
Experiment: 0, maximum fl; A, minimumfl; + ,f behind shock; x, f, ahead of shock.
File 94-19 (cf. table 2).

Fig. A-3. Sturtevant's response curves [26].

departures from the natural resonance frequency of the system (at w, = 0);
the vertical axis the maximum amplitude (fl,,,). The open circles are the

data we are interested in. They clearly exhibit a noticeable asymmetry. How-
ever. even at the levels Sturtevant was able to maintain, he notes a difference
in the expected and the observed resonance of only about 1I. The lack of a
substantial shift in the resonance peak probably means that it would be very
difficult to achieve a multivalued response curve and the concommitant jump
phenomena that signal a bifurcation. Without a bifurcation, the way seems
blocked to substantial subharmonic rcsponse (and subsequent chaos).
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3.3 Experiments to examine subharmonics

Only one experiment to date has been (lone to look specifically for subharmonics.
That work was done at Naval Postgraduate School by Donnelly [27]. Ills experiment

V" is in fact what we had in mind. He excited his tube at twice the lowest resonance
frequency and looked for subharmonics at the lowest resonance. No subharmonics
were observed. However, his peak levels were only about 160 dB (peak pressures
less than 0.1 atm). He did not attempt to drive his tube at higher amplitudes-the
seal around his piston began leaking and the Q of his system dropped dramatically.
In general, Q is lowered by increases in both tube losses and nonlinear effects.
Cruikshank encountered similar problems-one of his figures showing the loss of
Q as the level in the tube is increased is reproduced in Fig. A-4. One can only

-a (1) 0-

6 -2-

S0-4-I-.
'W-6

a: -10-

> -12 -
i~i

-14-

u019 -25 '-36 .018in. .038 in. .067in.
cr_: -18 - •. Q-33 .023in.
-20'
-20 88 92 96 100 104 108 112

FREQUENCY (Hz)
' 
., Effect of piston displacement amplitude on the pressure resonance curves.

Fig...-4. Cruikshank's response curves showing loss of Q with drive amplitude [25].

conclude that pressures must be greater than 0.1 atm. and Sturtevant's results
show that little subharmonic response can he expected even up to 0.82 atm.
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4 CONCLUSION

It seems that our proposed experiment has not proved fruitful. Even if we rouild
get up to the levels Sturtevant obtained,* we wvould not be assured of seeing sub-

harmonic response. Moreover, the resulting increase in level would also result in
a dramatic lowering of the system's Q and broadening of the response curve. A
broad response curve is much less likely to become multivalued than a narrow one.
Thus, we must conclude that a standing wave tube is not a good place to search
for chaos.

*This would take considerable expense of labor and money: Sturtevant's piston was connected
to a 15 lip motor and the piston to a water-.cooled pipe. The whole system was mounted on a I ton
bed isolated from the laboratory floor by air springs.
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